प्रश्नावली 13.1
जब तक अन्यथा न कहा जाए, π = 22/7 लीजिए |
Q1.दो घनों, जिनमे से प्रत्येक का आयतन 64 cm3 है, के सलंग्न फलकों को मिलाकर एक ठोस बनाया जाता है | इससे प्राप्त घनाभ का पृष्ठीय क्षेत्रफल ज्ञात कीजिए |
हल:
एक घन का आयतन = 64 cm3
एक किनारा = (64)1/3
= 4 cm
दो घनों के फलकों को मिलाने पर
l = 4 + 4 = 8 cm
b = 4 cm
h = 4 cm
इसप्रकार इस घनाभ का पृष्ठीय क्षेत्रफल = 2(lb + bh + lh)
= 2(8×4 + 4×4 + 8×4)
= 2(32 + 16 + 32)
= 2×80
= 160 cm2
अत: इस घनाभ का प्राप्त पृष्ठीय क्षेत्रफल 160 cm2 है |
Q2. कोई बर्तन एक खोखले अर्धगोले के आकार का है जिसके ऊपर एक खोखला बेलन अध्यारोपित है | अर्धगोले का व्यास 14 cm है और इस बर्तन (पात्र) की कुल ऊँचाई 13 cm है | इस बर्तन का आंतरिक पृष्ठीय क्षेत्रफल ज्ञात कीजिए |
हल :
Q3. एक खिलौना त्रिज्या 3.5 cm वाले एक शंकु के आकार का है, जो उसी त्रिज्या वाले एक अर्ध गोले पर अध्यारोपित है | इस खिलौने की संपूर्ण ऊँचाई 15.5 cm है | इस खिलोने का संपूर्ण पृष्ठीय क्षेत्रफल ज्ञात कीजिए |
हल:
अर्धगोलाकार भाग की त्रिज्या r = 3.5 cm
शंक्वाकार भाग की त्रिज्या r = 3.5 cm
शंक्वाकार भाग की ऊँचाई h = 15.5 – 3.5 = 12 cm
Q4. भुजा 7 cm वाले एक घनाकार ब्लाक के ऊपर एक अर्धगोला रखा हुआ है | अर्धगोले का अधिकतम व्यास क्या हो सकता है ? इस प्रकार बने ठोस का पृष्ठीय क्षेत्रफल ज्ञात कीजिए |
हल :
घनाकार ब्लॉक का एक किनारा = 7 cm
अर्धगोले का अधिकतम व्यास d = 7 cm
ठोस का पृष्ठीय क्षेत्रफल = घनाकार ब्लॉक का क्षेत्रफल + अर्धगोले का क्षेत्रफल – अर्धगोले से ढके एक वृत्त का क्षेत्रफल
⇒ ठोस का पृष्ठीय क्षेत्रफल = 6a2 + 2πr2 - πr2
= 6a2 + πr2 [ a = घन का एक किनारा ]
Q5 एक घनाकार ब्लाक के एक फलक को अन्दर की ओर से काट कर एक अर्धगोलाकार गड्ढा इस प्रकार बनाया गया है की अर्धगोले का व्यास घन के एक किनारे के बराबर है | शेष बचे ठोस का पृष्ठीय क्षेत्रफल ज्ञात कीजिए |
हल :
( चूँकि घन का किनारा अर्धगोले के ब्यास के बराबर है )
शेष बचे ठोस का पृष्ठीय क्षेत्रफल = घनाकार ब्लॉक का क्षेत्रफल + अर्धगोले का क्षेत्रफल – अर्धगोले से ढके एक वृत्त का क्षेत्रफल
= 6a2 + 2πr2 - πr2 [ a = घन का एक किनारा ]
= 6a2 + πr2
Q6. दवा का एक कैप्सूल (capsule) एक बेलन के आकार का है जिसके दोनों सिरों पर एक - एक अर्धगोला लगा हुआ है (देखिए आकृति 13.10) | पुरे कैप्सूल की लंबाई 14 mm है और उसका व्यास 5 mm है इसका पृष्ठीय क्षेत्रफल ज्ञात कीजिए |
हल :
यहाँ बेलन का ब्यास, अर्धगोले के ब्यास के बराबर है |
अत: अर्धगोले का ब्यास D = 5 mm
कैप्सूल का पृष्ठीय क्षेत्रफल = 2 (अर्धगोलों का वक्र पृष्ठीय क्षेत्रफल) + बेलन का वक्र पृष्ठीय क्षेत्रफल
= 2 × 2πr2 + 2πrh
= 2πr(2r + h)
Q7. कोई तंबू एक बेलन के आकार का है जिस पर एक शंकु आध्यारोपित है | यदि बेलनाकार भाग की ऊँचाई और क्रमशः 2.1 m और 4 m है तथा शंकु की तिर्यक ऊँचाई 2.8 m है तो इस तंबू को बनाने में प्रयुक्त कैनवस (canvas) का क्षेत्रफल ज्ञात कीजिए | साथ ही, 500 रू प्रति m2 की दर से इसमें प्रयुक्त कैनवस की लागत ज्ञात कीजिए | (ध्यान दीजिए कि तंबू के आधार को कैनवस से नहीं ढका जाता है |)
हल :
तम्बू के बेलनाकार भाग का ब्यास = 4 cm
अत: त्रिज्या r = 2 cm
बेलनाकार भाग की ऊँचाई h = 2.1 cm
शंकु की तिर्यक ऊँचाई l = 2.8 cm
ब्यास = 4 cm
और त्रिज्या r = 2 cm
इस तंबू को बनाने में प्रयुक्त कैनवस (canvas) का क्षेत्रफल
= बेलनाकार भाग का वक्र पृष्ठीय क्षेत्रफल + शंक्वाकार भाग का वक्र पृष्ठीय क्षेत्रफल
= 2πrh + πrl
Q8. ऊँचाई 2.4 cm और व्यास 1.4 cm वाले एक ठोस बेलन में से ऊँचाई और इसी व्यास वाला एक शंक्वाकार खोल (cavity) काट लिया जाता है |शेष बचे ठोस का निकटतम वर्ग सेंटीमीटर तक पृष्ठीय क्षेत्रफल ज्ञात कीजिए |
हल :
बेलन की ऊँचाई h = 2.4 cm
बेलन का ब्यास = 1.4 cm
अत: बेलन की त्रिज्या r = 0.7 cm
काटे गए शंकु की ऊँचाई h = 2.4 cm
और त्रिज्या r = 0.7 cm
शेष बचे ठोस का पृष्ठीय क्षेत्रफल = बेलन का वक्र पृष्ठीय क्षेत्रफल + शंकु का वक्र पृष्ठीय क्षेत्रफल + बेलन के पेंदी का क्षेत्रफल
= 2πrh + πrl + πr2
= πr(2h + l + r)
Q9. लकड़ी के ठोस बेलन के प्रत्येक सिरे पर एक अर्धगोला खोदकर निकालते हुए, एक वस्तु बनाई गई है, जैसाकि आकृति 13.11 में दर्शाया गया है | यदि बेलन की ऊँचाई 10 cm है और आधार की त्रिज्या 3.5 cm है तो इस वस्तु का संपूर्ण पृष्ठीय क्षेत्रफल ज्ञात कीजिए |
हल :
बेलन की ऊँचाई = 10 cm
आधार की त्रिज्या = 3.5 cm
अर्धगोले की त्रिज्या = 3.5 cm
वस्तु का संपूर्ण पृष्ठीय क्षेत्रफल
= बेलन का वक्र पृष्ठीय क्षेत्रफल + उपरी अर्धगोले का वक्र पृष्ठीय क्षेत्रफल + निचली अर्धगोले का वक्र पृष्ठीय क्षेत्रफल
= 2πrh + 2πr2 + 2πr2
= 2πr(h + r + r )
= 2πr(h + 2r )
अत: वस्तु का संपूर्ण पृष्ठीय क्षेत्रफल 374 cm2 है |
No comments: